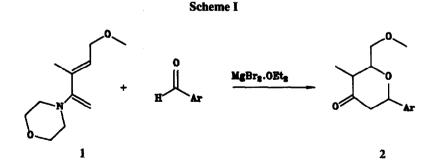
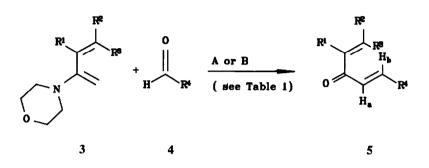
A VERY SIMPLE SYNTHESIS OF DIVINYLKETONES.


Jose Barluenga, * Fernando Aznar, M^{*} Paz Cabal and Carlos Valdes Departamento de Química Organometálica, Universidad de Oviedo 33071 Oviedo, Spain

Summary: Divinylketones are synthesized from aromatic aldehydes and 2-morpholinobutadiene derivatives in good yields.

Divinylketones are important starting materials in synthetic organic chemistry. They have been extensively used not only in the Robinson annulation¹ and Michael addition reactions, but also as dienophiles in the Diels-Alder reaction²; moreover, the synthesis of substituted cyclopentanones and cyclopentenones from these compounds by the Nazarov reaction³ is a versatile route for preparing of cyclopentanoid natural products.


Althougt there are several methods suitable for the preparation of simple systems⁴, only a few number of them allow the synthesis of highly functionalized divinylketones⁵

On the other hand, we have described recently the preparation of 4-oxanone derivatives 2^6 by reaction of the very easily available 2-morpholinobutadiene 1 with aromatic aldehydes and MgBr₂. OEt₂ (Scheme I).

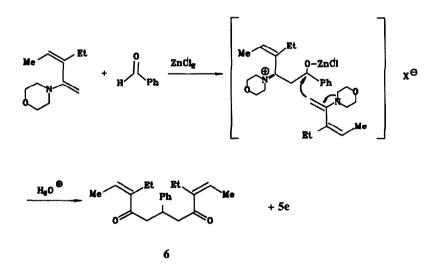
In this work we report that the treatment of 2-morpholinobutadienes 3 with aromatic aldehydes 4^7 in the presence of MgBr₂. OEt₂ (Method A) or ZnCl₂ (Method B) leads after hydrolysis (50% AcOH/H₂O solution) to the divinylketones 5 in a stereoselective fashion (Scheme II, Table I).

¹H-NMR data show compounds 5 to have the E configuration ($J_{Ha,Hb}$ = 15-17 Hz).

Scheme II

Some representative examples of the divinylketones 5 prepared from 2-morpholinobutadienes 3 are summarized in *Table 1^s*. The divinylketones 5i and 5j are obtained from 3 when $R^2 = CH_2$ -O-Si(CH₃)₃.

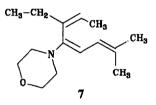
Divinylketone	R ¹	R ²	R ³	R4	Method ^a (A or B)	Yield ^b (%)
5a	-CH ₃	-CH ₂ -O-CH ₃	Н	Phenyl	A	87
5b	-CH ₃	-CH ₃ -O-CH ₃	Н	p-Cl-Phenyl	Α	72
5c	-CH ₃	-CH ₂ -O-CH ₃	н	2-Furyl	Α	84
5d	-CH ₃	-CH ₂ -O-CH ₃	н	2-Thienyl	Α	62
5e	$-CH_2-CH_3$	Н	$-CH_3$	Phenyl	В	64
5f	-CH ₂ -CH ₃	Н	-CH3	p-Cl-Phenyl	В	65
5g	-CH ₂ -CH ₃	Н	-CH3	2-Thienyl	В	45
5h	-(CH ₂) ₄ -		Н	2-Furyl	А	69
5i	-CH3	-CH2-OH	н	Phenyl	Α	77
5j	-CH ₃	-CH2-OH	н	2-Furyl	A	87


Table 1. Preparation of divinylketones from 2-aminobutadienes.

a) Method A 3:4:MgBr₂·OEt₂ (molar ratio 1:2:2, CH₃CN, 25 °C, 6h). Method B 3:4:ZnCl₂(molar ratio 1:2:2, THF, 70 °C, 8h).b) Isolated yield after trap to trap high vacuum (10^{-5} Torr) condensation. All new compounds were characterized by high resolution NMR and mass spectral analysis.

It is noteworthy that the 2-morpholinobutadiene 3 ($R^1 = Et$, $R^2 = H$, $R^3 = Me$) reacts with benzaldehyde in the presence of $ZnCl_2$ (molar ratio 3 : 1 : 1, CH₃CN, 25 °C, 6h.) affording after hydrolysis a 3:1 mixture of **6** and **5e** (Scheme III); the diketone **6** is rapidly isolated by destillation (65% yield based on benzaldehyde)⁸

The formation of **6** as the exclusive regioisomer can be understood by assuming that the initial addition reaction to the carbonyl group is followed by a nucleophilic attack of a second molecule of the 2-morpholinobutadiene at the oxygen-substituted carbon atom of the adduct. The structure of **6** has been deduced from its ¹H- and ¹³C-NMR and MS spectra.



Acknowledgement. Financial support of this work by Comisión Asesora de Investigación Científica y Técnica (CAICYT) is gratefully acknowledged.

REFERENCES AND NOTES

- 1. M.E. Jung, Tetrahedron 1976, 32, 3; R.E. Gawley, Synthesis 1976, 777.
- J. Sauer, Angew. Chem., Int. Ed. Engl. 1966, 5, 211, 1967, 6, 16; G. Desimoni, G. Tacconi, Chem. Rev. 1975, 75, 651; E. Ciganek, Org. React. 1984, 32, 1

- N.I. Nazarov, I.I. Zaretskaya, Zh. Obshch. Khim. 1957, 27, 693; G. Ohloff, K.H. Schulte, E. Demole, Helv. Chim. Acta 1971, 54, 2913.
- B.M. Trost, Chem. Soc. Rev. 1982, 11, 141; L.A. Paquette, Top. Curr. Chem., 1984, 1, 119; M. Ramiah, Synthesis 1984, 529.
- 5. M.R. Peel, C.R. Johnson, Tetrahedron Lett., 1986, 27, 5947.
- J. Barluenga, F. Aznar, R. Liz, M^a Paz Cabal, F. Hernandez, M.C. Foces-Foces J. Chem. Soc. Chem. Comm. 1988,1247.
- 7. The reaction with aliphatic aldehydes under the same reaction conditions affords a very complex mixture. However, isobutylaldehyde is able to react with 3 (R^1 =Et, R^2 =H and R^3 =Me) in the presence of ZnCl₂ (THF, 25°C, 6h) to give the enamine 7.

8. Spectroscopic data *e. g.* 4c. ¹H-NMR(CDCl₃) δ= 1.8(s,3H), 3.4(s,3H), 4.2(d,2H), 6.4(dd,1H), 6.5(d,1H), 6.7(t,1H), 7.1(d,1H, *J*= 15.36 Hz), 7.3(d,1H,*J*= 15.36 Hz), 7.4(d,1H) ppm. ¹³C-NMR (neat) δ= 11.8(q), 58.1(q), 69.5(t), 112.6(d), 115.5(d), 118.5(d), 128.2(d), 138.2(s), 138.4(d), 144.9(d), 151.7(s), 189.8(s) ppm. MS (m/e): 206 (M⁺).
6 ¹H-NMR(CDCl₃) δ= 0.9(t,6H), 1.6(d,6H), 2.1(t,4H), 2.9(d,4H), 3.7(m,1H), 5.6(q,2H), 7.3(s,5H) ppm. ¹³C-NMR (CCl₄) δ= 13.9(q), 15.6(q), 27.7(t), 37.1(d), 40.8(t), 127.9(d), 128.3(d), 128.4(d), 129.0(d), 144.4(s), 144.8(s), 196.0(s) ppm. MS (m/e): 320 (M⁺). 7 ¹H-NMR(CDCl₃) δ= 0.8(t,3H), 1.4(d,3H), 1.7(s,3H), 1.72(s,3H), 2.1(t,2H), 2.6-2.9(m,4H), 3.5-3.7(m,4H), 5.3(d,1H), 5.5(q,1H), 5.6(d,1H) ppm. ¹³C-NMR (neat) δ= 13.1(q), 15.2(q), 18.7(q), 26.9(q), 30.7(t), 49.5(t), 67.5(t), 102.5(d), 123.8(d), 124.8(d), 127.4(s), 138.7(s), 147.4(s) ppm. MS (m/e): 235 (M⁺).

(Received in UK 30 January 1989)